d'après l'écartement maximum du doublet qui correspond au groupe W(1), r=1,58 Å pour la distance intramoléculaire, soit la même valeur que dans le gypse.

$$2\alpha = 3\mu r^{-3} = 10,70 \text{ gauss } \pm 0,05,$$

 $\mu = 1,407.10^{-23} \text{ erg} \cdot \text{gauss}^{-1},$
 $r = 1,58 \text{ Å} \pm 0,02.$

Comparison avec les résultats de l'absorption infra-rouge

Nous avons étudié par absorption infra-rouge des échantillons préparés à partir de solutions saturées de La₂Mg₃(NO₃)₁₂.24H₂O et de La₂Mg₃(NO₃)₁₂.24D₂O (Deleplanque, Kahane & Serra, 1966). Les maxima d'absorption notés sur le spectre réalisé vers -190° C se situent entre 3,620 et 3,220 cm⁻¹, et montrent que les longueurs O-H···O des ponts hydrogène se situent entre 2,7 et 3,0 Å, ce qui est en accord avec les hypothèses faites par Zalkin, Forrester & Templeton.

Conclusion

La possibilité de placer les atomes d'hydrogène dans la maille d'un cristal par la diffraction des rayons X est souvent contestée, surtout dans des structures d'une certaine complexité.

Nous avons pu utiliser la résonance magnétique nucléaire pour tester la valeur du raffinement d'une structure de nitrate double hydraté d'après Zalkin, Forrester & Templeton. La RMN ne pouvait pas, dans un cas aussi complexe, permettre la détermination directe de la position des atomes d'hydrogène. On a pu montrer qu'en symétrie triclinique le nombre maximum de sites d'atomes d'hydrogène dont on peut obtenir la position à partir des spectres de RMN est de 6 (Touillaux, 1964). Ce nombre tombe à 1 en symétrie rhomboédrique. Or, dans la structure étudiée, le nombre de sites hydrogène est de 8.

Par contre, il était possible de vérifier ou d'infirmer l'orientation des molécules d'eau proposée par Zalkin, Forrester & Templeton. Aussi bien la RMN que l'absorption infra-rouge nous ont donné des résultats en accord avec la diffraction des rayons X, compte tenu de la marge d'erreur inhérente à cette technique pour la position des atomes d'hydrogène.

Du point de vue de la théorie de la liaison hydrogène, il apparaît donc que ce cristal présente un intérêt particulier lié à l'existence de plusieurs sortes de liaisons hydrogène: liaisons rectilignes, liaisons curvilignes et liaisons bifurquées donnant aux atomes d'hydrogène une coordination 3. Au fur et à mesure que les informations expérimentales s'accumulent, il se confirme que la liaison rectiligne considérée comme normale serait plutôt l'exception que la règle (Baur, 1965).

Nous avons pu, grâce à la RMN, apporter une précision concernant la distance des atomes d'hydrogène dans une même molécule d'eau. La structure déterminée par la diffraction des rayons X donnait la valeur $\Gamma = 1,1 \pm 0,4$ Å. Nous avons obtenu $\Gamma = 1,58 \pm 0,02$ Å. Ceci confirme que dans les hydrates, la molécule d'eau ne subit que de très légères déformations.

Nous remercions tout particulièrement Monsieur le Professeur Soutif, Directeur du Laboratoire de Physique Générale de la Faculté des Sciences de Grenoble, qui nous a donné les moyens de réaliser ce travail. L'un de nous (A.Serra) a obtenu un détachement temporaire pour travailler dans ce Laboratoire.

M.A.Kahane, Maître de Conférences, a pris en charge l'étude de l'absorption infra-rouge et son interprétation.

Références

- Atoji, M. & Rundle, R. E. (1958). J. Chem. Phys. 29, 1306. BAUR, W. H. (1965). Acta Cryst. 19, 909.
- DELEPLANQUE, M., KAHANE, A. & SERRA, A. (1966). C.R. Acad. Sci. Paris, 262, 52.
- PAKE, G. E. (1948). J. Chem. Phys. 16, 327.
- PEDERSEN, B. & HOLCOMB, D. F. (1963). J. Chem. Phys. 38, 61.
- TOUILLAUX, R. (1964). Thèse de doctorat, Univ. C. de Louvain.
- ZALKIN, A., FORRESTER, J. D. & TEMPLETON, D. H. (1963). J. Chem. Phys. 39, 2881.

Acta Cryst. (1966). 21, 681

The Crystal Structure of Strontium Permanganate Trihydrate

BY A. FERRARI, A. BRAIBANTI, G. BIGLIARDI AND A. M. MANOTTI LANFREDI Istituto di Chimica Generale, Università di Parma, Italy

(Received 21 March 1966)

The crystals of strontium permanganate trihydrate, $Sr(MnO_4)_2.3H_2O$, are cubic, space group $P2_13$, with $a=9.611\pm0.006$ Å. The structure has been solved by three-dimensional methods.

The structure consists of anions, MnO_{4}^{-} , cations Sr^{2+} , and water molecules. MnO_{4}^{-} groups have nearly tetrahedral symmetry (Mn-O, 1.605 ± 0.014 Å). The Sr^{2+} cations are surrounded by seven oxygen atoms belonging to MnO_{4}^{-} anions and by three water molecules. ($Sr-O_{av}$, 2.68 Å). The resulting coordination polyhedron, apart from one more atom in front of a basal face, is similar to that in $SrCl_2.6H_2O$ and in $Sr(VO_3)_2.4H_2O$ in which ninefold coordination has been found.

Introduction

Strontium ion, Sr^{2+} , presents unusual coordination numbers. For example, in the structure of $SrCl_2.6H_2O$

(Wells, 1962) and of $Sr(VO_3)_2$. $4H_2O$ (Sedlacek & Dornberger-Schiff, 1965) the coordination number is nine. The crystal structure of strontium permanganate trihydrate, $Sr(MnO_4)_2$. $3H_2O$, has been determined, in order to make one more contribution to the knowledge of the crystal chemistry of strontium.

Experimental

Crystals of strontium permanganate trihydrate have been prepared by Ferrari & Biagini Cingi (1966) by mixing aqueous solutions of silver permanganate and strontium chloride; silver chloride was filtered off and the solution was evaporated in a desiccator. The dark violet crystals obtained are very hygroscopic.

Under the polarizing microscope no observation could be made because of the dark color of the crystals. One crystal was sealed into a glass capillary tube. For the determination of the crystal symmetry and of the unit-cell constants, Weissenberg and precession photographs were taken with the same setting of the crystal (rotation axis [001]; Cu K α radiation: $\lambda = 1.5418$ Å). From the symmetry of the photographs and from the systematic absences, the crystals can be assigned to the monometric space group $P2_13$ (no. 198, T^4). The unitcell constant is $a=9.611 \pm 0.006$ Å. Four formula units, $Sr(MnO_4)_2$. $3H_2O$, are contained in the unit cell. The observed density, $D_m=2.78$ g.cm⁻³ is in satisfactory agreement with the calculated density, $D_x=2.84$ g.cm⁻³.

For the determination of the structure, reflexions hk0, hk1, hk2, hk3, hk4, hk5, hk6 and hk7 were taken, with Cu K α radiation, by the photographic method.

The intensities were measured by a microphotometer. Absorption corrections as for cylindrical specimens were applied (Bond, 1959) ($\mu R = 4.39$ for Cu radiation).

Determination of the structure

From the Patterson function P(UVW), trial sets of vectors Sr-Sr, Sr-Mn(1) and Sr-Mn(2) were obtained. The set was chosen which gave the best reliability index (R=0.3). As a further check of this choice, $\varrho_0(xyz)$

Fig.1. Strontium permanganate trihydrate. Electron density function

$$\left| \begin{array}{c} \varrho_0(xyz) \\ z=0 \end{array} \right|^{z=\frac{1}{4}},$$

projected on (001). Tetrahedra indicate MnO₄⁻ groups; triangles indicate three water molecules crystallographically related by ternary axis.

Fig. 2. Clinographic projection of the structure.

Table 1. Final atomic coordinates $\times 10^4$ (with e.s.d.'s)

	n	Cryst. point	x/a	y/a	z/a	В	Qo	Qc
Sr	4	(a)	2715(4)	2715(4)	2715(4)	2∙4 Å	88.2	92.5
Mn(1)	4	(a)	0138(7)	0138(7)	0138(7)	2.7	48.2	51.4
Mn(2)	4	(a)	5724(7)	5724(7)	5724(7)	2.7	50.0	51.3
0(1)	4	(a)	1113(33)	1113(33)	1113(33)	3.9	11.0	11.3
O(2)	4	(a)	6698(59)	6698(59)	6698(59)	4·4	9.2	9.8
Ō(1.I)	12	(b)	1174(36)	6027(40)	5371(42)	3.3	10.6	11.2
O(2.I)	12	<i>(b)</i>	0958(32)	8957(39)	5883(28)	3.9	11.6	12.4
H ₂ Ó	12	<i>(b)</i>	1922(34)	4654(37)	8053(43)	3.7	10.6	11.1

Table 2. Observed and calculated structure factorsReflexions marked by an asterisk were not recorded.

6 7 8 9 10 11 0 1 2
* 55555555555 666
112 351 351 351 203 274 397 407 239 157 162 942 254
21 106 776 397 434 219 311 430 446 237 117 163 751 196 438
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3
222222222222222222222222222222222222222
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
735 568 214 296 333 482 172 530 325 338 200 330 153 1600 864 306 993
695 578 197 301 400 547 150 544 343 386 219 319 179 1449 1127
4567 012345 0123 1
10 10 10 10 10 10 10 10 10 10 10 10 10 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
391 186 119 191 177 133 306 85 214 701
307 35 161 52 20 65 137 178 120 301 84 236 • 36
7890 01234567890 01
6666 777777777 88
302 282 175 131 393 706 520 413 326 311 243 311 287 116
337 309 150 119 303 564 376 308 299 325 247 303 245 70 • 84 115 341
5678910 11 012345678910 11
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
319 417 143 235 115 176 1161 398 203 213 430 454 319 184 268 305 92 143
452 367 493 112 235 107 205 987 346 491 579 405 197 291 316 87 184
8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10
0000 111111111111111111111111111111111
362 126 148 873 633 368 325 366 398 371 265 298 371 265 140 805
384 157 2 154 724 539 344 448 576 387 460 297 307 178 664
2 3 4 5 6 7 0 1 2 3 4 5 6 0 1 2 3
9999999 999999 10 100100 10110100 1111111
357 371 126 148 94 240 140 203 126 185 221 103 126 240 153
314 316 65 250 21 145 133 7 162 219 117 .06 239 150

ŀ	¥	1	10 <u>F</u>	10 <u>P</u> e	ħ	k	1	10 <u>7</u> 0	10 <u>P</u>	h	k	1	10 <u>F</u> 0	10 <u>r</u> o	Þ	¥	ł	10 <u>P</u>	10 <u>P</u>	Þ	¥	1	10 <u>7</u> 9	10 <u>7</u> 0	ħ	¥	1	10 <u>2</u> 0	10 <u>F</u> a	ħ	¥	1	10 <u>P</u> _0	10 2
23456789	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	555555555	196 406 279 301 279 352 223	140 426 458 316 334 325 362 251	01234567	66666666	55555555	384 347 365 196 150 260 242 155	311 290 345 157 170 332 294 109	5 0 1 2 3	10 11 11 11 11	5 5 5 5 5 5	192 141 123 109	231 163 142 116 •111	34 56 78 910	333333	6666666	334 295 172 216 152 132 245 207	367 405 157 235 179 138 263 285	3 4 5 6 7 8	7 7 7 7 7 7	6 6 6 6 6	506 221 162 167 212 113	477 213 109 148 214 144	4 5 7 8 9	1 1 1 1 1 1	7 7 7 7 7 7 7	485 287 143 181 224 101	477 262 119 138 212 72 52	4 5 6 7 8 9	555555	7 7 7 7 7 7	362 395 208 208 250	359 410 109 163 241 195
10 11 0	2	5 5 5	100 73 603	132 136	8 9 0	6 6 7	555	228 242 489	212 268	1 2 3	0000	6666	625 487 472 201	531 406 491 159	0 1 2	4	6 6 6	339 615 894	220 576 802	0 1 2 3 4	8 8 8	6666	138 191 344 177 177	78 131 309 180 178	0 1 2 3	2 2 2 2 2	7777777	203 405 474	9 252 376 463	0 1 2 3 4	66666	7 7 7 7 7	240 293 250 208 293	284 337 247 179 270
1 2 3 4 5	3333	55555	822 484 420 471 566	863 507 452 579 708	12345	7777777	55555	342 360 237 160 379	262 258 193 127 410	5 6 7 8 9	00000	6666	295 747 270 113 83	311 897 284 107 73	34567	4 4 4 4	66666	369 127 157 207 231	460 105 170 259 270	567	8 8 8	6 6 6	231 162 44	212 184 75	45678	2 2 2 2 2 2 2	7 7 7 7 7 7 7	315 336 368 309 229	303 258 337 303 218	5678	6 6 6	7 7 7 7	186 186 224 69	179 148 214 75
6 7 8 9 10	333	55555	141 206 214 118 91	101 220 275 124 86	6 7 8 9	7 7 7 7	5 5 5 5	182 201 233	179 163 239 •197	10 0 1	0	6	113 276 305	95 196 223	8 9 10	4 4 4	666	138 79 93	146 65 117	01234	99999	66666	241 236 162 113 236	248 229 150 92 262	9 10 0	2 2 3	777	117 133 554	118 183 787	0 1 2 3	7777	7 7 7 7	138 165 304 203	93 138 303 175
C 1	4	555	347 512	•119 217 458	0123	8 8 8 8	5555	507 296 206 401	446 232 186 363	234567	1 1 1 1	00000	201 374 260 383 285	373 256 290 352	0 1 2 3 4	55555	00000	713 447 378 143 231	638 435 334 101 254	5 6 0	9 9 10	6	231 63 108 88	94 94 92	123456	3333	777777	362 341 485 229 261	308 493 197 193	5 6 7	7 7 7	7 7 7	143 197 218 250	163 214 322
34567		55555	187 342 201 233	269 453 222 254	5 6 7 8	8 8 8	5555	123 201 246	81 190 241 • 95	8 9 10	1 1 1	6 6 6	290 245 143	288 302 161	6 7 8 9	5555	6666	212 177 167 113	294 179 190 142	234	10 10 10	6 6 6	103 108 108	119 126 116	7 8 9	3 3 3	777	192 133 101	175 71 97	0 1 2 3	8 8 8	777777777777777777777777777777777777777	128 186 197 181 123	95 297 245 151
8 9 10	4	555	192 87 187	244 146 219	0123	999	5555	279 228 274	237 161 262	0 1 2 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6666	609 699 438 433 625	438 608 382 489 756	0123	6666	6666	939 388 132 270	897 352 133 235	1 2 3 4 5	00000	7 7 7 7 7	277	12 303 51 767 430	0 1 2 3	4 4 4	7 7 7 7 7	165 368 320 496 197	137 387 299 475 166	5 6	8	777	197 101	239 144 245
0 1 2 3 4	55555	55555	338 333 333 576 201	239 281 316 708 222	4567	9 9 9 9	5555	233 182 136	191 145 142 •195	567890	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	666666	290 157 216 285 196	345 133 247 329 207	456780		666666	231 245 157 143 162	259 294 159 148 184	6 7 8 9 10	00000	7 7 7 7 7 7	171 128 235 208 181	112 93 229 190 211	5 6 7 8 9	4 4 4	777777	171 208 123 298 229	127 213 82 289 250	1 2 3 4 5	9 9 9 9 9 9	7 7 7 7 7 7	91 91 69 112	63 70 73 161 •197
6 7 8 9 10	, 5 5 5 5 5	555555	265 311 114 164 187	332 410 81 145 231	0 1 2 3 4	10 10 10 10	55555	141 187 338 95 146	117 185 339 68 143	0 1 2	333	6 6 6	270 276 310	211 272 265	0	7 7 7	666	132 172 378	112 119 337	0123	1 1 1 1	7 7 7 7 7	309 656 528 336	434 954 564 320	012.3	5555	7 7 7 7	235 255 358 287	144 240 325 220	0 1 2	10 10 10	7 7 7	91 74 53	196 140 84

Table 2 (cont.)

Table 3. Main interatomic distances and angles (with e.d.s.'s)

	А	nion MnO								
$\begin{array}{l} Mn(1)-O(1) \\ Mn(1)_{I}-O(1,I) \\ Mn(2)-O(2) \\ Mn(2)_{II}-O(2,I) \\ Mn-O_{av} \end{array}$	$\begin{array}{c} 1 \cdot 623 \pm 0 \cdot 033 \text{ Å} \\ 1 \cdot 600 \pm 0 \cdot 037 \\ 1 \cdot 621 \pm 0 \cdot 058 \\ 1 \cdot 591 \pm 0 \cdot 029 \\ 1 \cdot 605 \pm 0 \cdot 014 \end{array}$	$\begin{array}{c} O(1)_{I}-Mn(1)_{I}-O(1,I)\\ O(1,I)_{III}-Mn(1)_{I}-O(1,I)\\ O(2)_{II}-Mn(2)_{II}-O(2,I)\\ O(2,I)_{IV}-Mn(2)_{II}-O(2,I)\\ O-Mn-O_{av} \end{array}$	$\begin{array}{c} 108.9 \pm 1.8^{\circ} \\ 110.1 \pm 1.9 \\ 111.6 \pm 2.6 \\ 107.3 \pm 1.7 \\ 109.2 \pm 1.5 \end{array}$							
	Coordi	nation around Sr								
Sr-H ₂ Ov	2·573 + 0·036 Å	O(1,I)v-Sr-O(1,I)u	$120.0 + 1.1^{\circ}$							
Sr-H ₂ O ₁₁₁	2.573 ± 0.036	O(2,I)v-Sr-O(2,I)III	101.6 ± 0.9							
$Sr-H_2O_{VI}$	2.573 ± 0.036	$O(2,I)_{V}-Sr-O(1,I)_{V}$	63.1 ± 1.1							
Sr-O(1,I)v	2.771 ± 0.040	$74 \cdot 1 \pm 1 \cdot 2$								
Sr–O(1,I)111	2.771 ± 0.040	$H_2O_V-Sr-O(1,I)_{III}$	$(1,I)_{111}$ $71 \cdot 1 + 1 \cdot 1$							
$Sr-O(1,I)_{VI}$	2.771 ± 0.040	$H_2O_V-Sr-O(2,I)_{III}$	72.5 ± 1.1							
Sr-O(2,I)v	2.703 ± 0.033	$O(1)$ -Sr- $O(1,I)_V$	90.3 ± 1.1							
$Sr-O(2,1)_{111}$	2.703 ± 0.033	$H_2Ov-Sr-O(1,I)v$	$6/8 \pm 1.2$							
$Sr = O(2,1)_{VI}$	$2 \cdot 703 \pm 0.033$	O(1)-Sr-O(2,1)v	63.5 ± 1.0							
Sr = O(1)	2.067 ± 0.032	$H_2Ov-Sr-O(2,1)v_1$	131.4 ± 1.1 135.0 ± 1.1							
Sr-Oav	$2.6//\pm 0.0/4$	O(1)-Sr-H ₂ O _{III}	135.9 ± 1.1							
		$O(2,1)v - Sr - O(1,1)v_1$	64.0 ± 1.1							
	Coordi	nation around HaO								
$H_{0} = O(1 I)$	2.984 ± 0.052 Å	$H_2O = O(2 I)_{x}$	3.026 ± 0.049 Å							
$H_2O = O(1,1)$	3.112 ± 0.055	$H_2O - O(2)x_1$	3.144 ± 0.065							
$H_2O-O(1,1)_{VIII}$	2.956 ± 0.054	$H_2O-O(1,I)_{XII}$	3.361 + 0.056							
$H_2O-O(2,I)_{IX}$	3.099 ± 0.051									
, , ,	_									
No lobal	As	symmetric units								
	y z	$\begin{array}{c} \mathbf{V}\mathbf{I}\mathbf{I} & \mathbf{I}-\mathbf{Z} \\ \mathbf{V}\mathbf{I}\mathbf{I} & \mathbf{I}-\mathbf{X} \end{array}$	$\frac{1}{2} + x = \frac{1}{2} - y$							
	$\frac{1}{2} + y = \frac{1}{2} - 2$	$\begin{array}{c} \mathbf{v}_{111} & \mathbf{z} = \mathbf{\lambda} \\ \mathbf{i} \mathbf{Y} & \mathbf{z} = \mathbf{\lambda} \end{array}$	$1 - y = \frac{1}{2} + 2$							
$\begin{array}{c} \Pi & \chi - \frac{1}{2} \\ \Pi & \tau - 1 \end{array}$	$\frac{1}{2}$ - y 1 - z 1 - y	\mathbf{X} $\mathbf{\bar{x}}$	v_{-1}^{2} $\frac{2}{3} - 7$							
$\frac{11}{1}$ $\frac{2}{1}$	$\frac{1}{1+7}$ $\frac{1}{1-7}$	$XI \qquad 1-z$	$x - \frac{1}{2}$ $\frac{2}{3} - v$							
$V = \frac{1}{1-x}$	$1 - v \qquad z - \frac{1}{2}$	\overline{XII} $\frac{1}{2}$	$1-z$ $\frac{1}{3}+x$							
VI $1 - v$	$z - \frac{1}{2}$ $\frac{1}{2} - x$	2 9	2 • • •							
	~ -									

functions have been calculated with the use of phases corresponding to the various sets of vectors. The set chosen was the only one which gave reasonably good values of the electron density at the atomic peaks. The final $\varrho_0(xyz)$ is drawn in Fig. 1. The structure has been refined by differential syntheses. Isotropic temperature factors were refined by Nardelli, Fava & Giraldi's method (1963), by graphical comparison of observed and calculated electron densities at the peaks. Final $R_{hkl} = 0.16$ (observed reflexions). The final atomic coordinates are quoted in Table 1; observed and calculated structure factors are compared in Table 2. The main interatomic distances are reported in Table 3.

Fig. 3. Arrangement of atoms along the ternary axis.

Fig. 4. Coordination around strontium.

0 OH₂0

Fig. 5. Coordination around water.

Discussion of the structure

The structure (Fig. 2) is formed by tetrahedral anions MnO_4^- , cations Sr^{2+} and water molecules. The arrangement of the atoms along the ternary axis is shown in Fig. 3.

The MnO_4^- groups have nearly tetrahedral symmetry as expected and as shown by the equivalence of the distances: Mn(1)-O(1)=1.62, Mn(1)-O(1, I)=1.60, Mn(2)-O(2)=1.62 and Mn(2)-O(2, I)=1.59 Å (mean value: $Mn-O=1.605\pm0.014$). These distances are comparable with that (Mn-O=1.586 Å) found in MnO_3F by Javan & Engelbrecht (1954) by microwave spectra and with that (Mn-O=1.59 Å) found by X-ray diffraction in AgMnO₄ by Sasvari (1938) and in KMnO₄ by Mooney (1931).

The Sr^{2+} cations are surrounded (Fig.4) by three water molecules and by seven oxygen atoms belonging to MnO_4^- anions. The resulting coordination number is ten instead of nine as found in SrCl₂.6H₂O (Wells, 1962) and in Sr(VO₄)₂.4H₂O (Sedlacek & Dornberger-Schiff, 1965). The coordination polyhedron is substantially the same as for ninefold coordination, except one more coordinating atom along a line passing through the centre of one basal face. The distances between strontium and surrounding oxygen atoms are Sr-O(1,I)=2.77 Å, Sr-O(2,I) =2.70 Å, Sr-OH₂ =2.57 Å, Sr-O(1) = 2.67 Å with Sr-O_{av} = 2.68 Å, equivalent to Sr- $O_{av} = 2.67$ Å (ranging from 2.54 to 2.74 Å) found by Sedlacek & Dornberger-Schiff (1965) in Sr(VO₄)₂. 4H₂O for ninefold coordination. For eightfold coordination, the distance $Sr-O_{av} = 2.62 \text{ Å}$ is reported in International Tables for X-ray Crystallography (1962).

Each water molecule is surrounded by seven oxygen atoms (Fig. 5) at distances a little longer than that (2.75 Å) expected for hydrogen bonds (Wallwork, 1962) between OH_n and O^- .

It is a pleasure to thank Prof. L. Cavalca for facilities on the Olivetti Elea 6001/S computer of the Centro Calcolo, University of Parma. The Consiglio Nazionale Ricerche, Rome, is kindly thanked for the financial aid which has made the present research possible.

References

- BOND, W. L. (1959). Acta Cryst. 12, 375.
- FERRARI, A. & BIAGINI CINGI, M. (1966). Gazz. chim. ital. 96, 427.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JAVAN, R. & ENGELBRECHT, A. (1954). *Phys. Rev.* **96**, 649. MOONEY, R. C. L. (1931). *Phys. Rev.* **37**, 1306.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1963). Acta Cryst. 16, 343.
- SASVARI, K. (1938). Z. Kristallogr. 99, 9.
- SEDLACEK, P. & DORNBERGER-SCHIFF, K. (1965). Acta Cryst. 18, 407.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.
- WELLS, A. F. (1962). Structural Inorganic Chemistry, 3rd ed. p. 591. Oxford: Clarendon Press.